On the existence proof of Haar measure

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A SHORT PROOF FOR THE EXISTENCE OF HAAR MEASURE ON COMMUTATIVE HYPERGROUPS

In this short note, we have given a short proof for the existence of the Haar measure on commutative locally compact hypergroups based on functional analysis methods by using Markov-Kakutani fixed point theorem.

متن کامل

a short proof for the existence of haar measure on commutative hypergroups

in this short note, we have given a short proof for the existence of the haar measure on commutative locally compact hypergroups based on functional analysis methods by using markov-kakutani fixed point theorem.

متن کامل

The Haar Measure

In this section, we give a brief review of the measure theory which will be used in later sections. We use [R, Chapters 1 and 2] as our main resource. A σ-algebra on a set X is a collectionM of subsets of X such that ∅ ∈M, if S ∈M, then X \ S ∈ M, and if a countable collection S1, S2, . . . ∈ M, then ∪i=1Si ∈ M. That is, M is closed under complements and countable unions, and contains the empty...

متن کامل

On the Continuity of Haar Measure on Topological Groupoids

It is shown that continuity of a family of invariant (Haar) measures on a topological groupoid G is equivalent to the continuity of the implied convolution product f * g for all pairs of functions / and g. An example is given of a groupoid which admits no (continuous) Haar measure. It results, therefore, that the usual C*-algebra associated with a Haar measure on G cannot, in general, be constr...

متن کامل

Motivic Haar Measure on Reductive Groups

We define a motivic analogue of the Haar measure for groups of the form G(k((t))), where k is an algebraically closed field of characteristic zero, and G is a reductive algebraic group defined over k. A classical Haar measure on such groups does not exist since they are not locally compact. We use the theory of motivic integration introduced by M. Kontsevich to define an additive function on a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1974

ISSN: 0386-2194

DOI: 10.3792/pja/1195518748